Automating Feature Extraction with the ArcGIS Spatial Analyst Extension

Author: Michael Hewett

Paper Abstract
LIDAR data can be overwhelming to use for manual feature extraction, and specialized feature extraction software can be expensive to purchase. ArcGIS provides tools that can be utilized to help get more out of LIDAR first, last and intensity returns through automated processes. By following a few basic principles, it is possible to extract some common features such as vegetation, stream banks, some buildings, etc. This session is aimed at general ArcGIS users who wish to start making better use of their LIDAR datasets by automating extraction of features with the ArcGIS Spatial Analyst extension.

Scope
Automated feature extraction is a challenge that continues to be heavily researched throughout the GIS industry, and has still to be perfected. The purpose of this paper is to provide understanding of some extraction techniques already available to LIDAR data owners through the use of ArcGIS with the Spatial Analyst extension, and to stimulate them to think more widely about their data. The approaches outlined in this paper in most cases, will not provide the high quality feature outlines provided by some dedicated feature extraction software or manual compilation, nor does this paper claim to provide any new research into extraction techniques.

Untapped Wealth
Many organizations own or have access to LIDAR data. However, many of those organizations only use their data in the form it was provided to them by the vendor and for the one or two specific purposes for which it was acquired. LIDAR is a significant investment by any organization, and it therefore makes sense to get the best use out of that investment possible.

LIDAR data owners may not be tapping the potential of their data for a number of reasons. The volumes of data can be overwhelming, especially for large areas. It can appear difficult to extract meaningful data without specialist training and tools. Specialist software can be expensive, especially if there is no specific project budgeted. Data owners may not realize the potential of their data. For these reasons, and many more, there are vast stores of current and historic LIDAR data that are being underutilized.

However, if you have ArcGIS and the Spatial Analyst extension, you have the ability to start getting more out of your data for yourself and your clients.
Why consider automated extraction.

Having stated that the results of approaches outlined in this paper are likely to be of a lower quality those of dedicated feature extraction software or manual compilation, why should you consider the approaches outlined below.

The answers are:

Cost:
The approaches below will only cost you a few man hours and some processor time to explore if you have access to the Spatial Analyst extension. They will also allow you to make low cost assessments of the value of larger investments in extraction technology or projects.

Flexibility:
You can focus your methods to your goals, your data and your expertise. Once you start to build your corporate knowledge in the processes you will quickly be able to add or combine processes to meet new goals or needs, and you will be able modify the parameters of the process to suit your production and data environment.

Speed:
Automated processes are generally faster than manual processes. At the very least, they can reduce a series of manual interactions to one simple command. In some cases, you can convert manual processes and assessments to fully automated processes.

Control:
You will be able develop processes specifically tailored to your data, and have the ability to make changes to processing procedures as needed to meet the challenges of your particular situation. You will also have the ability to take processes you have developed and use them as modules of larger and more complex processes. Another aspect of control is the ability to apply the same settings to processes repeatedly without the possibility of typographic or other human error introducing inconsistencies between datasets.

This paper will provide you with a starting point.

The quality issue

Before starting the exploration of your data, it is important to understand the level of results you can expect. Some features will extract more cleanly than others. For example, if you are extracting rural dams, you are likely to get fairly good results. If you are trying to extract building outlines in a heavily treed suburban area, you results are likely to be less clean. You should still be able to identify most buildings, but the building outlines will usually not match the exact building shape. If you need that level of quality in your results, then there are other options that better suit your needs. As a general rule of thumb, the more homogenous you can make the feature you are trying to extract, or the more you can make it stand out from the background data, the better your results are likely to be.

The Basic Steps

Assess the available data.
LIDAR data comes in many forms. The data you hold will depend on the delivery contract signed with the vendor. LIDAR usually has elevation and intensity components. The elevation is the calculated elevation of the point from which the return was reflected. Intensity is the brilliance of the return. Some surfaces absorb or scatter the laser more than others, resulting in varying amounts of the laser being reflected back to the sensor. LIDAR data also often contains First and Last return values. These are datasets with returns from the first point the laser strikes and the last point the laser strikes. On solid surfaces such as concrete, the first and last returns are often virtually the same. However, in vegetated areas or with powerlines, there is often a significant difference between the first and last returns. This difference can be key information in identifying some features. You may also have a Bare Earth dataset. This is a dataset filtered to remove as much noise (vegetation, buildings, false returns, etc) as possible so as to display the data as if the LIDAR was being taken of the ground surface only. There are other forms of LIDAR available that are less common, and you may also have other datasets you would wish to use to enhance your feature extraction such as imagery, multi-spectral datasets, or radar, to name a few, but these will not be discussed in this paper.

LIDAR First Z return of sample area (6ft Res)

LIDAR Last Z return of sample area (6ft Res)
Identify
Identify what makes the feature you want to extract different from the rest of the data in your dataset. In some cases this will be easy, in others it will be harder. You don’t necessarily have to think in terms of lines and points initially, but you will eventually
have to figure out a way to extract them from the data. For example, buildings are usually higher than the surrounding area, lakes and dams are usually flat when they have water in them. Powerlines are usually above the surrounding ground and form a relatively straight line. Vegetation is usually not solid or at an even level. Converting those observations to extraction terms is fairly simple, and the extraction process for each will be outlined in more detail later in this paper.

Convert Data to a usable form.
In order to effectively process the data, you need to ensure it is in a form that you can use. Spatial Analyst generally operates on rasters, so the best format for the LIDAR data in this instance is raster format. ESRI provides a number of tools to convert XYZ tables to points, and to convert points to raster, so you should be able to process your data into a useable form fairly easily. It will depend on your data and your goals as to whether you create floating point or integer rasters. Use a resolution that is appropriate to both your LIDAR resolution and your extraction goal. You should try to pick a cell size that means at least one LIDAR point will fall into each cell.

Enhance
Data enhancement will allow better extraction of specific features. It allows emphasis of the characteristics that separate the sought after features from the surrounding data. There are many options available to enhance the data. Layers may be combined, scaled or converted in format. Mathematical calculations can be conducted, or other processes such as a fill can be applied. Some examples are outlined in the examples below, but the range of tools available in the Spatial Analyst toolbox will allow many other approaches.

Simplify the Data
After enhancing the data, it is useful to simplify the results. This will allow the results to be more easily converted to lines or polygons. Thinning, grouping and conditional extractions are just a few of the available options. The goal is to ensure each feature to be extracted contains a common value within the field to be used as the extraction criteria. During the extraction process, each unbroken grouping of identical values will be converted to a feature.

Extract
Once the data is simplified it can be extracted to line or polygon features. The Conversion toolbox contains tools to convert rasters to line, points or polygons. It is this process that generates the final features.

Cleanup
While these processes allow the automated generation of features, it also may result in the extraction of additional, undesired features. Automated and/or manual processes can be applied to remove the additional unwanted features. For example, if buildings are extracted from an elevation source, then there will be polygons representing the buildings and the surrounding vegetation and land areas. By calculating the areas of the polygons and removing, for example, those less than 100 sq feet or greater than 10000 sq feet, the majority of the remaining polygons will be buildings. There still may be some additional
manual deletion required, but this should be simple and far quicker to achieve than the
manual compilation of the buildings.

Examples

Rapid Assessment:
Rapid assessments situations often require information that provides a general overview
of a situation without the specific detail that is generally expected in normal situations.

Example: You wish to assess the extent of damage to structures in the region after a
major storm. You had pre storm data and contracted a LIDAR Data provider to provide a
rapid response post storm dataset.

Extract buildings from both sets of data using the same process.

Building Extraction
Assess Data
Data Source: LIDAR First, last and intensity returns and Bare Earth.

Identify
In general, buildings are at least 6-8 feet above the immediately surrounding land. They
typically have vertical walls. Problems: They may be completely or partially under
overhanging vegetation. Surrounding land probably slopes, meaning buildings may start
and end at any elevation. There is little we can do about overhanging vegetation. It is
possible to identify the vegetation, but very difficult to identify which returns, if any, are
from the building under the vegetation.

Convert Data to Usable Form
If data is not in raster form, convert it to a raster. Cell size of one or two meters will
usually suffice. Additionally, integer rasters will be simpler and faster to process in this
case.

Enhance
Chose a standard value to be assumed as one story, then choose a number slightly less
than the one storey value. For this example, lets use 8 feet.
Use the Spatial Analyst/Math/Divide tool to divide the Last return elevation raster by 8,
ensuring the result is an integer. This will provide a raster that is approximate stories.
We used a value of slightly less than 1 storey to ensure that we didn’t lose any buildings
into the surrounding elevation data level.
Simplify
Use the Spatial Analyst/Math/Int tool to remove decimals from the divide result. You should now have ‘regions’ of cells grouped by their ‘storey’ above sea level.
Use the Conversion Tools/From Raster/To Polygon tool to convert the results of the Region Group process to polygons. You will now have polygons representing every ‘Storey group’ feature, land and buildings.

![Image of polygon area](image)

Clean Up
Calculate the area of each polygon if needed (Geodatabases automatically generate an area field when the feature is created). Use the Spatial Statistics/Utilities/Calculate Area tool.
Select only polygons with an area greater than a nominated minimum building area value, and less than a nominated maximum building area value. Use the Analysis Tools/Select tools, or the Data Management Tools/Layers and Table View/Select Layer by Attribute and the Data Management Tools/General/Delete tool. You should now have mainly building polygons. The small polygons caused by vegetation and the large polygons caused by sloping land will have been removed. You may have other cleanup filter processes you wish to apply based on your knowledge of the area of interest.

Final result after applying filter for polygons between 300 and 10000 sq feet in area and approx 1 minute manual editing cleanup.
Once you have processed the two building sets as described above, you can do a number of comparisons to see which buildings have been destroyed or badly damaged. By being
able to do the rough assessment in house through an automated process, you can expect to have initial results faster than if you had to contract a company to do it for you or than if you had to manually process the data. You could also use a combination of first and last data from before the storm to identify likely vegetation overhang areas, and thus enable special treatment of these areas if needed.

Change Assessment:
The example above could also be classified as change assessment. Alternatively, you may wish to assess the density and area change to a vegetation tract over time by comparing LIDAR clouds.

Example:
You wish to assess the change in coverage of trees over 30 feet tall in a forest region over time.

Treed Area Extraction
Assess Data
Data Source: LIDAR First and Last for two or more epochs.

Identify
Trees are not a solid object. In most cases (extremely dense vegetation being the exception) a first return will be off the top of the tree, while a last return will be off lower parts of the tree or the ground. Therefore, by identifying areas where the first and last returns are 30 feet or more apart it is possible to identify where trees over 30 feet are growing. There are two approaches to this problem. If you have paired first and last datasets (ie you can identify and pair the first and last returns of individual pulses) then you can use the difference of the first and last pulse returns as your base data. This is probably the preferred approach, but you must remember to allow for any slope in the ray path when calculating the height. The second approach is to use the first and last points to create unpaired elevation datasets. This means that unrelated pulses may interact to generate a height difference for a particular cell. Unless data holders have structured their LIDAR storage in such a manner as to maintain pulse correlations, then this is the option that will have to be used, so will be the option outlined here.

Convert Data to usable form.
Convert the first and last returns for each epoch to raster format. Carefully consider your cell size based on vegetation variation, ground elevation changes and the detail resolution required by your results. If applicable, also consider the best method for converting points to raster (min, max, mean, etc).

Enhance
For each epoch, divide the first return by the height of the trees you wish to examine.
Next, convert the results of the last step to integers:

In order to identify which polygons are tree polygons that meet your criteria, you now need to find the areas where there are 30 foot differences between first and last returns.
Subtract the last returns from the first returns.

Next, convert the values to absolutes using Spatial Analyst/Math/Abs.
This is necessary because this process deals with grouped cell values containing multiple disassociated ray values rather than first and last on a ray.

Simplify
Use Spatial Analyst/Conditional/Con to extract cells where the calculated elevation difference is greater than 30 feet.

Extract
Convert the integer results of the first return divide into polygons.
Convert the raster cells representing 30 foot differences to points.

Overlay the points and polygons. Select the polygons that contain points and export them as a results file.
Clean up.
The results file in this instance contained 7 false polygons (4 large land area polygons and 3 smaller polygons triggered by buildings). With the removal of these 6 false polygons (less than 15 second manual editing) the treed areas are extracted, and are shown in pink, overlaid on the original first returns data.
By applying this process to each epoch of data and comparing the results, it is possible to assess the change in the bounds of areas of interest over time.

Project scope and scale assessments.
When considering investing in a new project, an automated feature extraction process may be a low cost means to assist in the evaluation the scope and scale of the project.

For example:
You wish to implement a project that assesses the water quality in rural dams in your administrative district. To assess the scope and cost of the project you need to identify how many dams would be affected, their approximate size, and where they are.
Assess Data
Data Source: LIDAR First, last and intensity returns and Bare Earth.

Identify
A rural dam, when full, will have no slope due to a flat water surface, while the surrounding land will have some slope component. Dams should have a raised dam wall. Possible problems: Dams are not always full, LIDAR in water can have uneven Z readings due to different turbidity and surface wave properties, there may be other flat areas such as flat rooftops or road sections, dry dams may not be visible on the intensity image.

Convert Data to Usable Form
If data is not in raster form, convert it to a raster. Cell size of several feet will usually suffice.

The image below is an elevation raster of a section of rural land at 1m pixel resolution.

Enhance
Use the Spatial Analyst/Hydrology/Fill tool to fill in dips in the ground. By choosing the settings that will fill until the overflow level, all dams and other depressions will have their Z value raised to the lowest overflow level of the dam/hollow. Raised roads, bridges etc will cause some false positives, as will small natural depressions. These will be fixed in the clean up process.
Convert the filled elevation raster to a slope raster using the Spatial Analyst/Surface/Slope tool.
Use the Spatial Analyst/Conditional/Con tool to extract all areas where slope < 0.01.

Extract
Use the Conversion Tools/From Raster/To Polygon tool to convert the results of the simplify process to polygons. You will now have polygons representing all zero slope areas. These will contain the false positives mentioned in the Enhance step.
Clean Up
To remove false positives:
Calculate the area of each polygon if needed (Geodatabases automatically generate an area field when the feature is created). Use the Spatial Statistics/Utilities/Calculate Area tool.
Select only polygons with an area of greater than a nominated minimum dam area value. (eg 500sq feet). Use the Analysis Tools/Select tools, or the Data Management Tools/Layers and Table View/Select Layer by Attribute and the Data Management Tools/General/Delete tool.
If you have road centerlines for the area you can use a buffered road centerline to select and delete the false positives caused by raised roads. If not, you may want to remove these problem areas manually using the intensity image as a guide, or you may wish to attempt an extraction of the roads for intensity or other data, then use those results to clean up the problem areas. Ultimately, you will have a reasonably good assessment of the dams in the area in question.

Process Model
A starting point for more detailed work.
You may find it faster/easier/cheaper in some instances to generate a coarse dataset automatically then spend your manpower on refining that dataset than to build the dataset through entirely manual processes.

In all of the above examples it is possible to identify less than ideal elements of the results. Polygons do not exactly match the features they represent. Smaller or borderline features may have been missed, and so on. With this in mind, you may want to improve on the results through further manual processing or refining the automated processing. In most cases, this additional processing will take less resources than creating the data from scratch through non automated means.

Economies of scale
While it may not seem worthwhile to develop automated processes for the area shown in the demonstration screenshots, the development time for a 1sq mile area or a 250sq mile area are the same. The only differences in production are processor time and cleanup time. With the longest manual cleanup time for the demonstration processes being less than 1 minute, the reduction in effort for large projects quickly outstrip the effort in manually producing even a coarse dataset. Automated processes also have the advantage of being able to run at night when workstations are typically less busy, thereby increasing the productivity of hardware resources held by an organization.
Conclusion
The processes outlined in this paper are limited in scope due to the need for a realistically brief paper. There are many other possibilities and uses for even the limited set of data used for demonstration. By applying the basic principles outlined in this paper, it is possible to add value to almost any LIDAR dataset. Although the results from these processes are generally coarse, there are many instances where the higher quality results available through manual compilation and dedicated extraction software are not needed, and the considerable extra expense makes them uneconomical for many uses. This is particularly true where the need is an estimation, approximation or rough guide. Consider the needs of your organization, clients or potential clients and start to unlock the untapped wealth of your LIDAR datasets.

Data Acknowledgements:
Permissions to the raw LIDAR data used for examples in this paper were kindly granted by the data owners:
USDA-NRCS, Wyoming for source data used in the rural dams example.
Medina Consultants Inc for all other source data.

References:
ESRI ArcGIS software documentation, Version 9.0.

Author Information
Michael Hewett
GIS Analyst
Sanborn Map Company, Inc
1935 Jamboree Drive
Suite 100
Colorado Springs, CO 80920
Phone: 719.593.0093
e-mail: mhewett@sanborn.com